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Traditional averaging methods for multilayer diffusion give inaccurate approximations of critical time
behaviour, such as the heating time of a material. In particular, they fail to capture the importance of
layer order. We use a perturbation expansion of an exact solution to find a simple approximate solution
which accurately describes the critical time for transport across multiple layers. This approximate solu-
tion is then used to find a correction for the averaging method which captures the key critical time
behaviour.
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1. Introduction

Critical times through multilayered mediums are important for
a number of applications, from annealing steel coils [1–3] to deter-
mining the effectiveness of drug carriers inserted into living tissue
[4]. For example, in heat transport the critical diffusion time, or
mean action time [5–7], is the time taken for a material to reach
a defined temperature after a temperature change is imposed on
the boundaries. A review of applications, analytic solutions, and
critical time definitions is included in the companion paper,
Hickson et al. [8], hereafter referred to as ‘‘Part 1 [8]”. This compan-
ion paper gives exact solutions for linear diffusion through
multiple layers and numerically explores the behaviour of the
critical time as a function of the number of layers. Other previous
work [9] also explores a critical time, although for a simpler case
with a different definition. In this second part, we analyse the ana-
lytic solutions of Part 1 [8] to find simple approximate expressions
for the diffusion and the critical time. For completeness the main
results of the companion paper are reproduced here with minimal
explanation. Due to the complexity of the perturbation method
only a specific set of boundary and interface conditions are used,
rather than the more general conditions applied in Part 1 [8]. A
solution for the more general conditions is non-trivial and the sub-
ject of further research.
ll rights reserved.
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The standard diffusion equation is applicable in each layer:

@Ui

@t
¼ Di

@2Ui

@x2 ; i 2 ½1;n�; ð1Þ

where Uiðx; tÞ is the temperature in layer i at position x for
xi�1 < x < xi and time t, as depicted in Fig. 1. The boundary condi-
tions used here assume an imposed ‘temperature’:

U1ðx0; tÞ ¼ h1; Unðxn; tÞ ¼ h2; ð2Þ

where h1 and h2 are constants. In a heat diffusion context this rep-
resents external temperatures being forced on the medium, for
example in the case of the steel coil being annealed [1–3]. Matching
conditions are assumed for the interfaces where

Uiðxi; tÞ ¼ Uiþ1ðxi; tÞ; ð3Þ

ji
@Ui

@x

����
xi

¼ jiþ1
@Uiþ1

@x

����
xi

; ð4Þ

and i ¼ 1;2; . . . ;n� 1 where ji ¼ qi ci Di is layer conductivity, qi is
layer density, ci is layer specific heat, and an ‘interface’ is the com-
mon boundary between two layers. Eqs. (3) and (4) represent con-
tinuity in temperature and flux respectively. For simplicity, we
assume qi ci ¼ 1.

As discussed in Part 1 [8], a standard critical time approxima-
tion is

tav ¼
L2

6Dav
; ð5Þ

where Dav is the series averaged diffusivity for layered materials,
given by
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Nomenclature

ci layer specific heat
D ¼ d2 single layer diffusivity
Dav ¼ d2

av average diffusivity

Deff ¼ d2
eff effective diffusivity

Di ¼ d2
i layer diffusivity

f ðxÞ initial condition
L total length of medium
li layer width
n total number of layers
t time
tav typical critical time
tc multilayer critical time
ts single layer critical time
Uðx; tÞ temperature
vðx; tÞ transient solution

Additional notation
½A;B� shorthand for n=2 biperiodic layers, material properties

DA, DB as ABAB . . . AB

x spatial position
wðxÞ steady state solution

Greek symbols
a proportion of the steady state
ji layer conductivity
km multilayer eigenvalues
lm single layer eigenvalues
qi layer density
h1 boundary condition at x ¼ x0

h2 boundary condition at x ¼ xn

Subscripts
i layer index
m eigenvalue index

R.I. Hickson et al. / International Journal of Heat and Mass Transfer 52 (2009) 5784–5791 5785
L
Dav
¼
Xn

i¼1

li
Di
; ð6Þ

where L is the total medium length, li is the width of layer i, and Di is
the diffusivity of layer i. The definition used in this paper was de-
scribed in Part 1 [8], where the value of t ¼ tc is defined such that

Z L

x¼0
Uðx; tcÞdx ¼ a

Z L

x¼0
wðxÞdx; ð7Þ

where Uðx; tÞ is the temperature, 0 < a < 1 is a chosen constant, and
wðxÞ is the steady state.

In Part 1 [8] we demonstrated that the standard approximations
given by Eqs. (5) and (6) give inaccurate results and the numerical
simulations illustrate a complex critical time behaviour. In this
article we will find general approximate solutions which improve
on these results. For example, for a medium with h1 ¼ 1; h2 ¼ 0,
and initial condition f ðxÞ ¼ 0, with n layers ABAB . . . AB, denoted
as ½A; B�, the critical time is

tc �
L2

6Dav
� 1� Dav

DA

� �
Ll

p2Dav
; ð8Þ

(taken from Section 6, Eq. (53)). A more general version of this is Eq.
(43) in Section 4. The expression for critical time is then used to find
a correction for Eq. (6).

In the next section we will outline the key results of the analytic
solution found in Part 1 [8] for the simpler boundary conditions
considered here. In Section 3 a general perturbation solution is de-
rived using results detailed in Appendix A. In Section 4 this compli-
cated perturbation solution is used to derive the general results
Fig. 1. Multilayer schematic with boundary conditions where h1 and h2 are constants. He
is the width of the layer.
equivalent to Eq. (8) above. These solutions are analysed in Section
5 and examples discussed in Section 6.

2. Exact solutions

The exact solutions were found using separation of variables,
outlined in Part 1 [8], and for completeness the key equations
are given here. We only consider the simpler case of constant
boundary conditions, hence in the notation of Part 1 [8],
a1 ¼ 1 ¼ a2 and b1 ¼ 0 ¼ b2.

When the initial condition f ðxÞ ¼ 0, the single layer solution is

Uðx; tÞ ¼ h1 þ
ðh2 � h1Þx

L
þ 2

X1
m¼1

h2ð�1Þm � h1
� �

mp
e�l

2
m t

� sin
mpx

L

� �
; ð9Þ

where lm are the eigenvalues,

lm ¼
mpd

L
; m ¼ 1;2;3; . . . ; ð10Þ

and we use the simpler notation d ¼
ffiffiffiffi
D
p

. Using Eq. (7) the critical
time for a single layer is then given by

ts �
L2

p2D
log

8
p2ð1� aÞ


 �
ð11Þ

for the leading eigenvalue. The critical time must be positive, there-
fore ð1� 8=p2Þ < a < 1. Equating this to Eq. (5) gives a ¼ 1�
ð8=p2Þ expð�p2=6Þ � 0:8435.

The exact solution for multilayers is
re Ui is the temperature in layer i at time t;Di is the diffusivity of a given layer and li
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Fig. 2. Temperature profile for a biperiodic region [1,0.1], with n ¼ 10; h1 ¼ 1; h2

¼ 0; l ¼ 0:1, at times t ¼ 0:01;0:2;1.
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Uiðx; tÞ ¼ wiðxÞ þ
X1
m¼1

Cme�k2
mtXi;mðxÞ; ð12Þ

where the summation constant is given by

Cm ¼
Pn

i¼1

R xi
xi�1

giðxÞXi;mðxÞdxPn
i¼1

R xi
xi�1

X2
i;mðxÞdx

; ð13Þ

here giðxÞ ¼ fiðxÞ �wiðxÞ, the eigenvalues, km, are defined by the
transcendental expression

Jn;m sin km
ln

dn

� �
þ Kn;m cos km

ln

dn

� �
¼ 0; ð14Þ

and the eigenfunctions are

Xi;mðxÞ ¼ Ji;m sin
km

di
ðx� xi�1Þ

� �
þ Ki;m cos

km

di
ðx� xi�1Þ

� �
: ð15Þ

The coefficients of the eigenfunctions are recursively defined:

Jiþ1;m ¼
di

diþ1
Ji;m cos km

li

di

� �
� Ki;m sin km

li

di

� �� 

; ð16Þ

Kiþ1;m ¼ Ji;m sin km
li

di

� �
þ Ki;m cos km

li

di

� �
; ð17Þ

where J1;m ¼ 1 and K1;m ¼ 0. The steady state solution is

wiðxÞ ¼ qiðx� xi�1Þ þ hi; ð18Þ

where h1 ¼ h1,

qi ¼
Davðh2 � h1Þ

LDi
; ð19Þ

hi ¼ h1 þ
Davðh2 � h1Þ

L

Xi�1

j¼1

lj

Dj
: ð20Þ

The critical time for multiple layers, tc , is found by solving

ð1� aÞ
Xn

i¼1

Z xi

xi�1

wiðxÞdxþ
Xn

i¼1

Z xi

xi�1

v iðx; tcÞdx ¼ 0: ð21Þ

Substituting Eq. (12) into this gives

ð1� aÞ
Xn

i¼1

hi li þ
qi l2

i

2

( )
þ
Xn

i¼1

di

X1
m¼1

Cm

km
e�k2

mtc Wi;m ¼ 0; ð22Þ

where

Wi;m ¼ Ji;m 1� cos
kmli
di

� �
 �
þ Ki;m sin

kmli

di

� �
: ð23Þ

The numerical results shown in Part 1 [8] provided some insight as
to how the critical time behaviour differs for multiple layers as op-
posed to a single medium, however it fails to explain why this dif-
ference occurs. Hence in the next section we will explore an
approximate perturbation of the exact solution which will illumi-
nate the causes for this behaviour.

3. Perturbation

In this section we perform a perturbation analysis on the exact
solution, Eq. (12), to find simple approximate solutions which rep-
resent the behaviour shown in the results of Part 1 [8]. A number of
assumptions are made in the process. First, a biperiodic region,
½A;B�, is used. Second, the total length of the medium, L, is fixed
and the widths of the ‘A’ and ‘B’ layers are assumed to be equal,
hence lA ¼ lB ¼ l ¼ L=n.

Example biperiodic temperature profiles are shown in Fig. 2 for
L ¼ 1; h1 ¼ 1; h2 ¼ 0; n ¼ 10; l ¼ 0:1; DA ¼ 1, and DB ¼ 0:1, at
times t ¼ 0:01; 0:2;1.
Biperiodic layers have been studied before, such as the previ-
ously mentioned work on steel coils [1] which consists of biperiod-
ic layers of steel and air, and the analytic and numerical work of
Azeez and Vakakis [10], Ash et al. [11,12], and Barrer [13].

The perturbation parameter chosen is l ¼ L=n, which is small for
large n. Hence as n!1; l! 0. A complication arises since nl ¼ L,
which is of order one. Hence any terms including il, where i is the
layer number, are of indeterminate order and must be treated with
care.

The solutions in the ‘A’ and ‘B’ layers are sufficiently different
(see Fig. 2) that they must be considered separately. Hence there
will be two perturbation series, one for UiA and another for UiB .

Due to the complexity of the problem, each of the variables in
Eq. (12) are treated separately. That is, the steady state, wiðxÞ, is
considered in Section 3.1, the eigenfunction, Xi;mðxÞ, in Section
3.2, the eigenvalues, km, in Section 3.3, and finally the summation
coefficient, Cm, in Section 3.4. The complete solution is constructed
in Section 3.5. Due to the algebra being both long and detailed, the
computer algebra system Maple [14] was used to calculate and
check the work done in Sections 3.1–3.5, including Appendix A.
3.1. Steady state

The steady state solution for multilayer diffusion, detailed in
Eqs. (18)–(20), are now calculated in terms of the biperiodic
assumptions outlined earlier in Section 3.

The summation term in Eq. (20) is of particular importance in
simplifying the steady state, and requires considering whether
layer i is material ‘A’ or material ‘B’ in the ½A;B� structure. If i corre-
sponds to an ‘A’ layer then ði� 1Þ corresponds to a ‘B’ layer, so

Xi�1

j¼1

1
Dj
¼ i� 1

2
1

DA
þ 1

DB

� �
: ð24Þ

Eq. (6) can be rearranged for the ½A; B� structure with equal layer
widths to show

1
2

1
DA
þ 1

DB

� �
¼ 1

Dav
: ð25Þ

Therefore,

Xi�1

j¼1

1
Dj
¼ i� 1

Dav
; ð26Þ

which is expected since this summation is simply ði� 1Þ=2 com-
plete AB pairs. Similarly, if i corresponds to a ‘B’ layer then ði� 1Þ
corresponds to an ‘A’ layer, so
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Xi�1

j¼1

1
Dj
¼ i

Dav
� 1

DB
� i� 1

Dav
þ 1

DA
: ð27Þ

Therefore the constant hi is rewritten as

hiA ¼ h1 þ
ðh2 � h1Þ

L
ði� 1Þ l

hiB ¼ h1 þ
ðh2 � h1Þ

L
i� Dav

DB

� �
l; ð28Þ

where hiA is the constant in ‘A’ layers and hiB is the constant in ‘B’
layers.

By definition of the structure depicted in Fig. 1 and with the
assumption that all widths are equal, then i ¼ xi=l and
xi�1 ¼ xi � l. Using these, the biperiodic structure, and substituting
Eq. (28) into Eq. (18), gives

wiA ¼ h1 þ
ðh2 � h1Þx

L
þ 1� Dav

DA

� �
ðh2 � h1Þðx� xi�1 � lÞ

L
; ð29Þ

wiB ¼ h1 þ
ðh2 � h1Þx

L
� 1� Dav

DA

� �
ðh2 � h1Þðx� xi�1Þ

L
; ð30Þ

where wiA is the steady state solution in ‘A’ layers, and wiB is the
steady state solution in ‘B’ layers.

When l! 0; xi � xi�1 � x so Eqs. (29) and (30) approach the
single layer steady state solution, given by the first two terms in
Eq. (9).

3.2. Eigenfunction, Xi;mðxÞ

Calculation of a perturbation series for the eigenfunctions, Eq.
(15) is complicated by the recursive coefficients Ji;m and Ki;m, Eqs.
(16) and (17). Finding these coefficients as a perturbation series is
non-trivial. To aid readability, this calculation is shown separately
in Appendix A, with the final results given in Eqs. (68) and (69).

Substituting Eq. (68) into the eigenfunctions, Eq. (15), and using
Maple to simplify the resulting perturbation series, gives the eigen-
functions when i corresponds to an A layer as

XiA ;mðxÞ ¼
1
2

1þ dA

dav

� �
sin xmðxA þ xi�1Þð Þ




þ 1� dA

dav

� �
sin xmðxA � xi�1Þð Þ

�
þxm

4
1� Dav

DA

� �

� fcosðxmðxA � xi�1ÞÞ � cosðxmðxA þ xi�1ÞÞg lþ Oðl2Þ;
ð31Þ

with

xA ¼
ðx� xi�1Þdav

dA
; xm ¼

mp
L
: ð32Þ

Similarly, using Eq. (69) gives

XiB ;mðxÞ ¼
dA

2
1
dB
þ 1

dav

� �
sinðxmðxB þ xi�1ÞÞ þ

1
dB
� 1

dav

� �


� sinðxmðxB � xi�1ÞÞg þ
xm

4dav

Dav

DA
� 1

� �
� fð2dA þ dHÞ cosðxmðxB þ xi�1ÞÞ þ ð2dA � dHÞ
� cosðxmðxB � xi�1ÞÞg lþ Oðl2Þ ð33Þ

with

xB ¼
dHðx� xi�1Þ

dA
; dH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DA � Dav

p
: ð34Þ

Note that d ¼
ffiffiffiffi
D
p

for subscripts A, B, and av. Although these expres-
sion can be rewritten using standard trigonometric identities, the
resulting expressions yield no new insight.

When l! 0; xi � xi�1 � x so
Xi;mðxÞ !
dA

dav
sin

mpx
L

� �
ð35Þ

for both the ‘A’ and ‘B’ cases. For a single layer, dA ¼ dav ¼ dB, hence
reducing Xi;m to the single layer eigenfunction in Eq. (9).

3.3. The eigenvalues

The eigenvalues, km, satisfy Eq. (14). The constants Jn;m and Kn;m

are a critical part of this equation and are found the same way as
Eq. (69) in Appendix A, but by substituting i ¼ L=ð2lÞ � 1, giving

Jn;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DA � Dav
p

dav
cos

km L
dav

� �
þ kmðDA � DavÞ

2DAdav
sin

km L
dav

� �
l

� 

þ Oðl2Þ

� Kn;m ¼
dA

dav
sin

km L
dav

� �
� kmðDA � DavÞ

dADav
cos

km L
dav

� �
lþ Oðl2Þ:

ð36Þ

These are substituted into Eq. (14) which is then expanded as a per-
turbation series in l to give

km ¼
mpdav

L
� 1� Dav

DA

� �2 m3p3dav

24L3 l2 þ Oðl4Þ: ð37Þ

Note the zeroth order is equivalent to the single layer eigenvalue,
Eq. (10).

3.4. Summation coefficient, Cm

If the initial condition fiðxÞ ¼ 0, the summation coefficient, Eq.
(13), is given by

Cm ¼
Pn

i¼1

R xi
xi�1
�wiðxÞXi;mðxÞdxPn

i¼1

R xi
xi�1

X2
i;mðxÞdx

: ð38Þ

Since wi and Xi;m are split into ‘A’ and ‘B’ layer solutions, this
becomes

Cm ¼

Pn�1
i�A

R xi
xi�1
�wiA ðxÞXiA ;mðxÞdxþ

Pn
i�B

R xi
xi�1
�wiBðxÞXiB ;mðxÞdx

Pn�1
i�A

R xi
xi�1

X2
iA ;m
ðxÞdxþ

Pn
i�B

R xi
xi�1

X2
iB ;m
ðxÞdx

;

ð39Þ

where i � A denotes ‘A’ layers and i � B denotes ‘B’ layers. Each of
the four integrals were evaluated separately and a perturbation ser-
ies calculated for each. The resulting coefficient has the form

Cm ¼ Cð0Þm þ Cð1Þm lþ Cð2Þm l2 þ . . . ; ð40Þ

where

Cð0Þm ¼
2dav½h2ð�1Þm � h1�

mpdA
: ð41Þ

Surprisingly all higher order terms calculated were zero (Cð1Þm , etc.),
although investigation of this is the subject of further research. For a
single layer, dA ¼ dav ¼ dB, hence this is equivalent to the summa-
tion constant in Eq. (9).
3.5. Construction of complete solution

The complete solution is constructed by substituting the results
from Sections 3.1–3.4 into Eq. (12). A further perturbation series of
this and simplifications give

UAðx; tÞ ¼ Uð0ÞA ðx; tÞ þ Uð1ÞA ðx; tÞ lþ Oðl2Þ and

UBðx; tÞ ¼ Uð0ÞB ðx; tÞ þ Uð1ÞB ðx; tÞ lþ Oðl2Þ: ð42Þ
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For readability these terms are only explicitly shown in Appendix B,
Eqs. (70)–(74).

When l! 0; xi � xi�1 � x so UAðx; tÞ ! Uðx; tÞ and UBðx; tÞ !
Uðx; tÞ, Eq. (9). This behaviour is expected since it has been shown
[8,9] the averaging of material properties works as the number of
layers approaches infinity, which is equivalent to l! 0.

4. Critical time

The perturbed average critical time is calculated by substituting
Eq. (42) into Eq. (21). The resulting perturbation series has the
form

tc ¼ tð0Þc þ tð1Þc lþ tð2Þc l2 þ tð3Þc l3 þ Oðl4Þ; ð43Þ

where

tð0Þc ¼
L2

p2Dav
log

8
p2ð1� aÞ


 �
; ð44Þ

tð1Þc ¼
L

p2Dav
1� Dav

DA

� �
H; ð45Þ

tð2Þc ¼ �
L0

p2Dav
1� Dav

DA

� �2 p2

12
log

8
p2ð1� aÞ


 �
þH2

2
þ p2

24

" #
; ð46Þ

tð3Þc ¼
L�1

p2Dav
1� Dav

DA

� �3 p2H
12
þH3

3

" #
; ð47Þ

H ¼ ðh2 � h1Þ=ðh2 þ h1Þ, and tð0Þc � ts, Eq. (11). We note that although
there do appear to be patterns within these results, for example the
ordered powers of L, Hn=n and 1� Dav

DA

� �
, we were unable to find a

general expression for the nth order term. Calculation of higher or-
der terms is non-trivial with the apparent simplicity of the final re-
sults belying the limitations in Maple computational ability.

4.1. Effective diffusivity

Another interpretation of the critical time is to assume it is gi-
ven by the standard diffusive time for a single layer, Eq. (11), with
D ¼ Deff :

tc �
L2

p2Deff
log

8
p2ð1� aÞ


 �
; ð48Þ

but where Deff is correctly defined for a multilayered material. Set-
ting Eq. (48) equal to Eq. (43) and rearranging for Deff gives

Deff ¼ Dav � 1� Dav

DA

� �
ðh2 � h1ÞDav

Lðh1 þ h2Þ log 8
p2ð1�aÞ

n o lþ Oðl2Þ: ð49Þ

Note the zeroth order term is the average diffusivity, Dav.

5. Results

To illustrate the perturbation results the critical time is calcu-
lated as a function of the number of repeated layers, n=2, using
the assumptions outlined in Section 3. That is, a biperiodic region
is used, represented by the notation ½DA; DB�, with equal widths
for all layers. The diffusivity values of [1,0.1] and [0.1,1] are used.
The region is defined with x0 ¼ 0 to xn ¼ 1, hence L ¼ 1. The initial
condition used is fiðxÞ ¼ 0. The boundary conditions are set to
h1 ¼ 1 and h2 ¼ 0. To allow comparison with the other results from
the literature [11–13], detailed in Appendix C, we choose the stan-
dard value of a ¼ 0:8435 as determined in Section 2.

Results in Fig. 3 indicate the critical time calculated numerically
from the exact solution, Eq. (22) for both [1,0.1] and [0.1,1] scenar-
ios. The solution using the traditional averaged diffusivity,
Dav ¼ 0:18, approximated from Eqs. (5) and (6) are also shown.
Additionally the first order approximations from Eq. (43), for both
[1,0.1] and [0.1,1] scenarios, and the solution from Ash et al. [11],
Eq. (76), are shown. The results from Fig. 3 illustrate the accuracy
of just the first order perturbation approximation, along with the
relative inaccuracy of the series-averaged approximation Dav, and
the results from earlier literature [11]. The first order solution does
not replicate the behaviour of the numerically found exact solution
for 1 and 2 repeated layers (that is AB and ABAB layers). This is to be
expected since for 2 repeated layers the perturbation parameter is
l ¼ 0:25, which is relatively large. As the number of layers in-
creases, all solutions converge to the single layer solution with
the averaged diffusivity, Dav as expected.

To illustrate the second order solutions, Fig. 4 depicts the
numerically found critical times, Eq. (22), and the second order
perturbation approximations, from Eq. (43). As expected, the sec-
ond order approximation captures the behaviour of both layer con-
figurations with more accuracy than the first order approximation,
giving accurate results for as few as two repeated layers. It also
captures the local maximum in the ‘Num. [0.1,1]’ solution. Analyt-
ically this maximum can be found by differentiating Eq. (43) with
respect to n, noting l ¼ L=n, to give

dtc

dn
� �tð1Þc L

n2 � 2tð2Þc L2

n3 : ð50Þ

Setting this to zero and solving to find when n is at its maximum
gives

nmax �
�2tð2Þc L

tð1Þc

: ð51Þ

For example if a ¼ 0:8435; h1 ¼ 1 and h2 ¼ 0,

nmax �
1

36
1� Dav

DA

� �
ðp4 þ 3p2 þ 36Þ: ð52Þ

This has a negative, non-physical solution for Dav > DA, hence the
maximum only occurs for one of the cases explored above.

For the same values used to generate the above figures,
nmax � 3:7. Since it is not possible to have a fraction of layer, this
becomes nmax � 4, which is two repeated layers. This corresponds
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Fig. 4. Numerical solutions for the exact, Eq. (22), and second order perturbed, from
Eq. (43), multilayer critical times. The same parameters are used as in Fig. 3.
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to the result obtained in Fig. 4. The plot of the third order provides
no new insight, as it does not detect the sharp drop. Calculation of
the fourth order is restricted by complexity and computational
power.

Hence for this example it takes longer for a four layer medium
to heat up than any other number of layers. However, it is unclear
physically why this should be the case. A deeper understanding of
why this maximum occurs, particularly in other geometries and
layer configurations (for example a triperiodic region) is the sub-
ject of further research.
6. Discussion

The perturbed multilayer critical time, Eq. (43), appears compli-
cated due to its generality. Hence, we discuss solutions with a spe-
cific simplified set of values. We assume a biperiodic region with
h1 ¼ 1; h2 ¼ 0; f i ¼ 0, and a ¼ 0:8435. Therefore Eq. (43) becomes

tc ¼
L2

6Dav
� 1� Dav

DA

� �
L l

p2Dav
þ Oðl2Þ: ð53Þ

Alternatively, the critical time can written as tc ¼ L2=ð6DeffÞ, giving

Deff ¼ Dav þ
6
p2 1� Dav

DA

� �
Dav l

L
þ Oðl2Þ: ð54Þ

In both Eqs. (53) and (54) the key term is ð1� Dav=DAÞ. Using Eq.
(25),

1� Dav

DA

� �
¼ 1� 2

1þ DA
DB

 !
: ð55Þ

If DA ¼ DB then ð1� Dav=DAÞ ¼ 0, naturally giving the single layer
solution. If DA > DB then ð1� Dav=DAÞ > 0 while if DA < DB;

ð1� Dav=DAÞ < 0. This gives the symmetric behaviour of the critical
time for the [0.1,1] and [1,0.1] cases illustrated.

The alternate critical time definition, Eq. (5), determines when
the flux at one of the boundaries approaches steady state flow,
whereas the definition we have explored, Eq. (7), finds when the
average temperature of the medium reaches a chosen proportion
of the average steady state temperature. We reproduced the
asymptotic analysis from Crank [15] using the multilayer solution,
Eq. (12), giving
tnew ¼ �
d1 LCm

kmh2Dav
: ð56Þ

Using the approximate expressions for Cm from Eq. (41) and km from
Eq. (37), gives

tnew ¼ tð0Þnew þ tð1Þnew lþ tð2Þnew l2 þ Oðl3Þ; ð57Þ

where tð0Þnew is given by Eq. (5), tð1Þnew ¼ 0, and the second order is given
by a complicated hypergeometric function. Further exploration of
this critical time definition, along with comparisons with other
applicable definitions, are the subject of future work.

While we have only considered biperiodic materials ½A;B�, with
simple boundary and interface conditions, it is possible to extend
this work to more complicated situations. We are currently
researching other approximate solutions for triperiodic layers
½A;B;C�, that is ðABCÞðABCÞ . . .; cases where lA–lB; for mixed bound-
ary and jump interface conditions; using alternative critical time
definitions; and for cylindrical and spherical coordinates. Whilst
these extensions are possible using the techniques we have dem-
onstrated here, they are nontrivial to find, with great care needed
in manipulating the intricate equations, even with the use of sym-
bolic manipulation software. Indeed, even subtle extensions reach
current computational limits. Evolution of more efficient computa-
tional algebra systems, algorithmic methods for coding these sys-
tems, and increased computational power would facilitate
further research in this area.

7. Conclusions

Diffusive transport through a multilayered material is nontriv-
ial. In particular, averaging the properties of a multilayered med-
ium does not capture its critical time behaviour, such as the time
to reach a specified temperature. By finding the exact solution
for multilayer diffusion, and using a perturbation series, we have
determined simple expressions which give the critical diffusion
time. This corrects the commonly used series-averaged diffusivity
method for finding critical times. Importantly it captures the asym-
metric behaviour of a multilayered medium; it does matter in
which order a material is layered when considering diffusion.

Appendix A. Eigenfunction coefficients

To find the perturbation of Eq. (15), the coefficients Ji;m and Ki;m,
Eqs. (16) and (17), must first be analysed. This analysis uses a
biperiodic region, where the layers are ordered ‘ABABAB. . .’. To
facilitate this, the coefficients are first written in matrix form. That
is, let

Ki ¼
Ji;m

Ki;m

� 

: ð58Þ

The recursive relationships established in Eqs. (16) and (17) are
then

Kiþ1 ¼Mi Ki;

where

Mi ¼
di

diþ1
cos km

l
di

� �
� di

diþ1
sin km

l
di

� �
sin km

l
di

� �
cos km

l
di

� �
2
64

3
75 ð59Þ

and

K1 ¼
1
0

� 

: ð60Þ

This matrix notation then allows us to express Ki as
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KiA ¼ ðMBMAÞði�1Þ=2K1;

KiB ¼ MA ðMBMAÞði�2Þ=2K1; ð61Þ

where iA denotes ‘A’ layers and iB denotes ‘B’ layers,

MA ¼
dA
dB

cos km
l

dA

� �
� dA

dB
sin km

l
dA

� �
sin km

l
dA

� �
cos km

l
dA

� �
2
64

3
75 and

MB ¼
dB
dA

cos km
l

dB

� �
� dB

dA
sin km

l
dB

� �
sin km

l
dB

� �
cos km

l
dB

� �
2
64

3
75:

MBA ¼MBMA is then diagonalised. That is, for ‘A’ layers,

Mði�1Þ=2
BA ¼ PDði�1Þ=2 P�1 ¼ P

x1 0
0 x2

� 
ði�1Þ=2

P�1

¼ P
xði�1Þ=2

1 0

0 xði�1Þ=2
2

" #
P�1; ð62Þ

where D is a diagonal matrix with elements the eigenvalues, x1 and
x2, of MBA, and P contains the corresponding eigenvectors. There-
fore Eq. (61) becomes

KiA ¼ ðPDði�1Þ=2 P�1ÞK1;

KiB ¼ MA ðPDði�2Þ=2 P�1ÞK1: ð63Þ

The matrix MBA is not shown due to its considerable size, however
its eigenvalues, x1 and x2, are given by the two solutions of

x2 þ 2x
dA

dB
þ dB

dA

� �
sin km

l
dA

� �
sin km

l
dB

� �
� cos km

l
dA

� ��

� cos km
l

dB

� �

þ 1 ¼ 0: ð64Þ

The next step is to evaluate the eigenvalues to the relevant powers,
such as xði�1Þ=2

1 in Eq. (63). First, the index i is written in terms of l as
i ¼ ð1þ xi�1=lÞ, such that ði� 1Þ=2 ¼ xi�1=ð2lÞ and i=2� 1 ¼
ðxi�1 � lÞ=ð2lÞ for the A and B layers, respectively. Second, a pertur-
bation series of the resulting expressions are calculated. Finally,
dB is rewritten in terms of dav, and the expressions are simplified:

xði�1Þ=2
iA

¼ xxi�1=2l
iA

! exp � Ixi�1km

dav

� �
þ Oðl2Þ; ð65Þ

xði�2Þ=2
iB

¼ xðxi�1�lÞ=2l
iB

! exp � Ixi�1km

dav

� �
1� Ikm

dav
lþ Oðl2Þ

� 

; ð66Þ

where I ¼
ffiffiffiffiffiffiffi
�1
p

and the exponential forms were expected from the
relationship between the eigenvalue expressions and the powers
with l. The two eigenvalues, x1 and x2, are contained within Eqs.
(65) and (66) as the ±/� solutions. The eigenvectors, Vj, which form
the columns for P are

Vj ¼
MBA½2;2� �xj

�MBA½2;1�

� 

; j ¼ 1;2 ð67Þ

where, for example, [2,1] denotes the second row and first column
of MBA.

Substituting Eqs. (65) and (67) into Eq. (63) for the ‘A’ layers
gives,

JiA ;m
¼ cos

kmxi�1

dav

� �
þkmðDA�DavÞ

2davDA
sin

kmxi�1

dav

� �
lþOðl2Þ

KiA ;m¼
dA

dav
sin

kmxi�1

dav

� �
þOðl2Þ; ð68Þ

denoted by iA. Similarly, for the ‘B’ layers,
JiB ;m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DA�Dav
p

dav
cos

kmxi�1

dav

� �
þkmðDA�DavÞ

2DAdav
sin

kmxi�1

dav

� �
l

� 

þOðl2Þ

KiB ;m¼
dA

dav
sin

kmxi�1

dav

� �
�kmðDA�DavÞ

dADav
cos

kmxi�1

dav

� �
lþOðl2Þ: ð69Þ
Appendix B. Solution perturbation series

Each term in Eq. (42) is shown in full. The zeroth and first order
‘A’ layer terms, respectively, are

Uð0ÞA ðx; tÞ ¼ h1 þ
ðh2 � h1Þx

L
� 1� Dav

DA

� �
ðh2 � h1Þðx� xi�1Þ

L

þ
X1
m¼1

e�k2
mt ðð�1Þmh2 � h1Þ

mp
1þ dav

dA

� �
sin xm½xA þ xi�1�ð Þ




� 1� dav

dA

� �
sinðxm½xA � xi�1�Þ

�
; ð70Þ

Uð1ÞA ðx; tÞ ¼ 1� Dav

DA

� �
xm dav

2dA

X1
m¼1

e�k2
mt ðð�1Þmh2 � h1Þ

mp

�fcosðxm½xA � xi�1�Þ � cosðxm½xA þ xi�1�Þg; ð71Þ

with

xA ¼
ðx� xi�1Þdav

dA
; xm ¼

mp
L
: ð72Þ

The zeroth and first order ‘B’ layer terms are

Uð0ÞB ðx;tÞ¼ h1þ
ðh2�h1Þ

L
dH

dA
xBþxi�1

 !
þ
X1
m¼1

e�k2
mt ðð�1Þmh2�h1Þ

mp

� 1þdH

dA

 !
sinðxm½xBþxi�1�Þ� 1�dH

dA

 !
sinðxm½xB�xi�1�Þ

( )
;

ð73Þ

Uð1ÞB ðx; tÞ ¼ � 1� Dav

DA

� �
ðh2 � h1Þ

L
þ 1

2L
1þ dH

dA

 !
1� dH

dA

 !

�
X1
m¼1

e�k2
mtðð�1Þmh2 � h1Þ 2þ dH

dA

 !
cosðxm½xB þ xi�1�Þ

(

þ 2� dH

dA

 !
cosðxm½xB � xi�1�Þ

)
; ð74Þ

with

xB ¼
dHðx� xi�1Þ

dA
; dH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DA � Dav

p
: ð75Þ

The ð1� Dav=DAÞ term is of particular interest as it allows the solu-
tion to be either side of the averaged single layer.

Appendix C. Alternative critical time

Previous authors [11–13], derived an expression for the critical
time in layered materials as

t ¼
Xn

i¼1

li

d2
i

" #�1 Xn

i¼1

l2
i

2d2
i

Xn

j¼i

lj

d2
j

 !
� l3

i

3d4
i

( )"

þ
Xn�1

i¼1

li

d2
i

Xn

k¼iþ1

lk

Xn

j¼k

lj

d2
j

" #
� l2

k

2d2
k

 !( )#
: ð76Þ

Their method integrated Eq. (1) from x to xi with respect to x, then
integrated again from x ¼ xi�1 to xi and summed the result from
i ¼ 1 . . . n. Eq. (1) was then integrated from x ¼ xi�1 to xi and
summed from iþ 1 to n, and substituted into the previous expres-
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sion. This resulted in an expression for the flux across the outgoing
surface, x ¼ xn, which was then integrated from t ¼ 0 to t to calcu-
late the total mass. The asymptote of the total mass was then found
as t !1.

This result is illustrated in Fig. 3 but does not accurately reflect
the critical time we have found, nor does it identify the asymmetric
nature of the critical time.
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